

SIZE, DIMENSIONALITY AND STRONG ELECTRON CORRELATION IN NANOSCIENCE

BRUS Louis E.

Columbia University, Chemistry Department, New York, United States

Abstract

The quantum size effect and very strong electron correlation are two hallmarks of nano electronic structure. While the quantum size effect is a one electron property, electron correlation involves interactions among the electrons. In electronic structure theory, electron-electron repulsion causing correlation is normally considered only in an average (or mean field) sense, as for example in a single Hartree-Fock determinant. This is the simple molecular orbital model which is often a good approximation for molecules. In infinite systems this averaging treatment leads to delocalized electronic bands -- an excellent description of bulk 3D sp3 semiconductors. However in reality electron-electron repulsion and correlation create new collective states and cause new femtosecond kinetic processes. This is especially true in 1D and 2D systems. I discuss strong correlation in carbon nanotubes, graphene, zero dimensional quantum dots, , transpolyacetylene chains, transition metal dichalcogenides, organic/inorganic Pb iodide perovskites, and pentacene van der Waals crystals. The independent contributions of screening and dimensionality are analyzed.

Author did not supply full text of the paper.