

THE ADSORPTION OF HALOGEN AND HYDROGEN ATOMS ON GRAPHENE: THE NATURE OF BOND AND STABILITY

MATOCHOVA Dagmar, KARLICKY Frantisek

Palacky University in Olomouc, Olomouc, Czech Republic, EU

Abstract

We studied bond properties of graphene's fluorinated derivatives and adsorption of fluorine, chlorine and hydrogen atom on graphene. For all calculations density functional theory was used. The character of C-F bond varies with fluorine concentration and local structure: one atom of fluorine makes ionic bond with graphene, but C-F in fluorographene (100% coverage) corresponds to a covalent bond. Configurations with fluorine atoms in trans positions are highly stable. On the other hand, hydrogen atom makes both noncovalent and covalent bond with graphene, which is weaker than a classical hydrogen-carbon covalent bond in other compounds. Chlorine does not make a typical chemical bond with graphene at all, but it creates a charge transfer complex. The strength of this bond is similar to the strength of the hydrogen-graphene covalent bond. Fluorine interacts more strongly with graphene than hydrogen and chlorine. Finally, adsorption of atoms significantly changes electronic properties of graphene.

Keywords: Graphene, fluorographene, adsorption on graphene, fluorinated derivatives, adsorption of fluorine, adsorption of hydrogen, density functional theory

Author did not supply full text of the paper.