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Abstract 

Nowadays, nanomaterials are highly integrated into our daily life. However, recent studies have shown 

obvious toxicity of some nanoparticles to living organisms, and their potentially negative influence on 

environmental ecosystems. The goal of the present study is to develop efficient QSPR models that allow 

predicting the ecotoxicological properties and effects of inorganic nanomaterials (metals and oxides) by 

using the Online Chemical Modeling Environment (OCHEM). Numerical data on toxicity of nanoparticles to 

different organisms have been taken from the literature and uploaded in the OCHEM database. The main 

characteristics of nanoparticles such as chemical composition of nanoparticles, average particle size, shape 

and information about the biological test species were used as obligatory condition for all properties in 

OCHEM. 15 QSPR models were compared by following the same procedure with different combinations of 

descriptors and machine learning methods. QSPR methodologies used Random Forests (WEKA-RF), k-

Nearest Neighbors and Associative Neural Networks. The predictive ability of the models was tested through 

leave-one-out cross-validation, giving a q2=0.69-0.79 for regression models and total accuracies Ac=76-

100% for classification models. Predictions for the external evaluation sets obtained accuracies in the range 

of 78-100% (for low/high toxicity classifications) and q2=0.70-0.79 for regressions. The method showed itself 

to be a potential tool for estimation of toxicity of new nanoparticles at early stages of nanomaterial 

development. 
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1. INTRODUCTION 

The beginning of this new century is marked by revolutionary developments in the field of nanotechnology 

with newer and more diverse applications of nanoparticles (NPs) appearing practically every day. Various 

NPs such as Ag, Au, Fe, metal oxide NPs (TiO2, SiO2, Al2O3, ZrO2, SnO2, mixed compositions) are among 

the main leaders in a growing number of applications [1]. However the depth of knowledge of the toxic 

properties of these novel materials is still at its initial stage, whereas the application of nanomaterials brings 

a potential long term risk of global environmental threat and it cannot be excluded that nanomaterials are 

dangerous for human beings and other living organisms [2]. Therefore, the understanding of the relationship 

between the physicochemical properties and the toxicity of nanoparticles in biological systems is obligatory 

for designing harmless and efficient products. 

Modeling of the toxic effects of nanoparticles of different composition can help to abridge the time of 

experimental studies, reduce the overall costs and save life of organisms used in vivo tests. Quantitative 

structure-property relationship (QSPR) methods provide one choice for establishing such models [1]. A main 

goal of QSPR studies is to find a mathematical relationship between the property of a chemical under 

investigation (e.g. Lethal dose - LD, Effect Concentration - EC, etc.), and one or more descriptive properties 

(descriptors) related to the structure of the substance [3]. Obviously in the case of substances as NPs with 

unclear molecular architecture, the standard QSPR approach cannot be applied. In such systems the QSPR 

models can be built up using alternative information, for example available physicochemical parameters, 
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solubility, octanol water partition coefficient, technological conditions and parameters selected for 

manufacturing of various nanomaterials, etc. [3]. 

The focus of this work is to develop robust QSPR models that allow to predict the toxicity of representative 

inorganic nanomaterials (metals and oxides) by using the Online CHEmical Modeling environment 

(OCHEM) [4] on the basis of the literature data relating the ecotoxic and human health effects of NPs to their 

inherent properties (chemical composition, size characteristics, electronic state, coordination, shape and 

morphology, etc.). The OCHEM modeling engine supports all steps of QSAR/QSPR modeling: data 

preparation, calculation and filtering of molecular descriptors, application of machine learning methods, 

analysis of the model, assessment of the models domain of applicability and using the built model to predict 

target properties for new substances [4]. 

2. MATERIALS AND METHODS 

2.1. Experimental data 

The data for our analysis were obtained from many publications and stored in the OCHEM database. The 

main priorities were given to toxicity of metal and metal oxide nanoparticles (Fe, Ag, Pd, Ni, TiO2, ZnO, CuO, 

etc.). The detailed structures and the corresponding toxicity of the nanoparticles and the full list of 

publications are documented in OCHEM [4]. 

The OCHEM allows using conditions of experiments in the modeling process as descriptors and makes it 

possible to join data measured under different conditions into one modeling set. The basic characteristics of 

nanoparticles such as chemical composition of the nanoparticles, average particle size (APS), shape, 

surface coating, specific surface area, zeta potential, hydrodynamic diameter and information about 

experimental species were used as obligatory condition for all properties in OCHEM. Thus each record was 

required to incorporate information about these most important nanoparticle parameters. 

The toxicity of NPs was expressed as LC50, EC50, LD50 and MIC. The LC50 (lethal concentration) is the 

concentration of a toxicant that kills 50% of a test population for a given exposure duration. EC50 (effective 

concentration) is the concentration of a given NP that reduces the specified effect to half that of the original 

response. LD50 (lethal dose) is the dose which causes the death of 50% of the members of a tested 

population, whereas MIC (minimum inhibitory concentration) is the lowest concentration of the toxicant 

needed to produce an inhibitory effect. 

The dataset 1 consisted of 335 nanoparticles. The LC50 values of the 335 NP ranged from 0.001 to 20000 

mg/L. All nanoparticles were divided into two classes: high toxicity NPs (154 with LC50 ≤ 2.0 mg/L) and low 

toxicity NPs (122 with LC50 > 2.0 mg/L). The remaining 59 NPs were excluded from the data set for 

classification purpose as duplicates because they possess the same composition and obligatory conditions 

as other nanoparticles in the initial dataset. For regression purposes, data set 1 was divided into two 

subsets: data set 1.a with 101 metal oxide nanoparticles and data set 1.b with 234 metal nanoparticles. 

The dataset 2 was composed of 221 nanoparticles. The range of EC50 values for these NPs ranged from 

0.001 to 20000 mg/L. All NPs were split into two classes: high toxicity NPs (92 with EC50 ≤ 2.0 mg/L) and low 

toxicity NPs (111 with EC50 > 2.0 mg/L). Finally, 18 duplicate NPs were excluded from the data set for 

classification tasks. 

The data obtained as MIC values formed dataset 3. The dataset consisted of 94 nanoparticles with MIC 

values ranging from 0.84 to 20000 mg/L. The nanoparticles were divided into two classes: 48 high toxicity 

NPs (with MIC ≤ 4.0 mg/L) and 46 low toxicity NPs (with MIC > 4.0 mg/L). 

The dataset 4 contained 23 nanoparticles. The range of LD50 values for these NPs ranged from 3.31 to 

1104.8 mg/L. All nanoparticles were separated into two classes: 9 high toxicity NPs (with LD50 ≤ 100 mg/L) 

and 14 low toxicity NPs (with LD50 > 100 mg/L). 

The datasets encompassed different acute endpoints and partially different conditions, biological targets, 

chemical composition and atomic structures of the inorganic nanomaterials tested. The biological data 

obtained as lethal concentration (LC50, i.e. the concentration causing 50% lethality) and the 50% effect 
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concentration (EC50) were converted into log(LC50) and log(EC50) values and used as dependent variable in 

the subsequent QSPR analyses. 

For all data sets about 25-30% of NPs were randomly selected to form external independent test sets, and 

the remaining NPs were used as training sets. 

2.2. Machine Learning Methods 

In this study, we used the OCHEM to develop high accuracy models for predicting toxicity of 

nanoparticles. Several machine-learning methods were used to build QSPR models using basic 

characteristics of nanoparticles and different descriptor sets. 

Associative Neural Network (ASNN). This method combines an ensemble of feed-forward neural 

networks trained with a back propagation learning algorithm (BPNN) and k-nearest neighbors (kNN) 

approach [5]. The kNN method was used for correction of predicted values averaged over an 

ensemble of neural networks based on errors in prediction of k-nearest neighbors in chemical space 

or in space of an ensemble of BPNN models. This process of correcting predicted values based on a 

set of nearby patterns is targeted to diminish the systematic error for a subset of chemical space and 

known as Local Correction (LC) or Associative Memory approach [5]. ASNN uses correlation 

between ensemble responses as a measure of distance amid the analyzed cases for the nearest 

neighbor technique. The ASNN significantly improves predictive precision of models without a need 

to retrain the neural network ensemble of models. We have used a single layer BPNN, containing 

five neurons in the hidden layer. The SuperSab algorithm was used to optimize the BPNN weights. 

100 BPNN were included in an ensemble and the number of learning iterations for neural network 

training was 1000 [6]. 

k-Nearest Neighbor Method (kNN). The k-nearest neighbour method predicts the activity or class 

of the target pattern by majority vote over k neighbors that are the nearest ones to the target sample. 

Here k is a positive integer, usually selected by a cross-validation method. If k = 1, then the object is 

simply assigned to the class of its nearest neighbor [7]. In the case of regression analysis, a 

(weighted) average value of activities of its k-nearest neighbors is used as predicted value. The 

neighbors are taken from a set of training set samples for which the correct classification (or, in the 

case of regression, the value of the property) is known. In order to identify neighbors, the objects are 

represented by position vectors in a multidimensional feature space. The k-nearest neighbor 

algorithm is sensitive to the local structure of the data. The optimal value of k in the range of 1 to 100 

was automatically detected by OCHEM [4]. 

WEKA-RF (Random Forest). This method is also a WEKA implementation of a random decision tree [8]. 

The underlying algorithm presents a number of attractive features, such as an internal procedure for 

descriptor selection. A RF is not affected by correlated descriptors since it uses random samples to build 

each tree in the forest. RFs calculate predictions by using majority vote of the individual trees. This is a high-

dimensional nonparametric method that works well on large numbers of variables [8]. 

2.3. Descriptors 

In a preprocessing step using ChemAxon Standardizer [9], all structures were standardized and optimized 

with Corina [10]. Unsupervised filtering of descriptors was applied to each descriptor set before using it as a 

machine learning input. Descriptors with fewer than two unique variables or with a variance less than 0.01 

were eliminated. Further, descriptors with a pair-wise Pearson’s correlation coefficient R>0.95 were grouped. 

The section below briefly explains the different kinds of descriptors [4]. 

The descriptors available in the OCHEM are grouped by the software name that contributes them: E-State 

indices [11], ALogPS program [12], Dragon descriptors [13], etc. Here we briefly described type of used 

descriptors. 

E-State indices. E-state refers to electrotopological state indices that are based on chemical graph 

theory. E-State indices are 2D descriptors that combine the electronic character and the topological 

environment of each skeletal atom. 
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ALogPS calculates two 2D descriptors, namely the octanol/water partition coefficient and the 

solubility in water. 

Chemaxon descriptors. The ChemAxon Calculator Plugin [9] produces a variety of descriptors. 

Only properties encoded by numerical or Boolean values were used as descriptors. They were 

subdivided into seven groups, ranging from 0D to 3D: elemental analysis, charge, geometry, 

partitioning, protonation and many others. 

Dragon V.6.0. Dragon is a software package from Talete [14] which calculates 4885 molecular 

descriptors subdivided into 29 different logical blocks. Dragon can calculate many molecular 

descriptors such as geometrical, constitutional and topological descriptors, connectivity and 

information indices, topological charge indices, atom-centered fragments, molecular properties and 

many others. Detailed information about the descriptors can be found on the Talete website [14]. 

2.4. Statistical coefficients 

Regression models. The generally used measures of a regression model performance are the root mean 

square error (RMSE), the mean absolute error (MAE), the squared correlation coefficient R2 and the cross-

validated coefficient q2. The OCHEM system calculates these statistical parameters for both the training and 

the validation sets. 

Classification models. The OCHEM server uses the average correct classification rate (in percentages) as 

a measure of the classification quality of the models. The correct classification rate is complemented with a 

confusion matrix that shows the number of compounds classified correctly for every class as well as details 

of misclassified compounds, e.g. how many compounds from a class A are classified to belong to a class B. 

3. RESULTS AND DISCUSSION 

3.1. Regression models 

Table 1 summarizes the statistical parameters obtained for the best regression QSPR models. Based on 

previously suggested recommendations, QSPR models with q2 > 0.5 were considered to have an acceptable 

predictive power [15]. Four regression QSPR models were developed by ASNN using different data sets and 

different numbers of descriptors. The performances of the individual models for the test sets were used to 

compare the predictive ability of the models. The q2 coefficients for the training sets ranged from 0.69-0.79. 

The compounds in the external test sets were predicted with accuracies that generated q2 ranging from 0.70-

0.79 (Table 1). Model 3 was developed using only basic characteristics of nanoparticles. The other models 

were derived on the base of different amounts of calculated descriptors. 

Table 1 Statistical coefficients calculated using the ASNN for different data sets 

Ma. Data name Set NPs Desc.b R2 q2 RMSEc MAEd 

1 Data set 1 
(LC50) 

Training set 1 234 32 0.71±0.04 0.71±0.04 1.02±0.07 0.75±0.04 

Test set 1 101 0.74±0.05 0.74±0.05 0.98±0.09 0.70±0.07 

2 Data set 1.a 

(Metal oxides) 

Training set 1.a 76 24 0.69±0.06 0.69±0.06 1.09±0.09 0.87±0.07 

Test set 1.a 25 0.79±0.07 0.78±0.07 0.90±0.09 0.70±0.10 

3 Data set 1.b 

(Metals) 

Training set 1.b 132 9 0.79±0.04 0.79±0.04 0.85±0.07 0.64±0.05 

Test set 1.b 56 0.78±0.06 0.76±0.06 0.80±0.10 0.56±0.08 

4 Data set 2 
(EC50) 

Training set 2 115 379 0.79±0.03 0.79±0.03 0.65±0.04 0.51±0.04 

Test set 2 49 0.70±0.10 0.70±0.10 0.90±0.10 0.64±0.09 

aM – QSPR model number; bDesc. – amount of selected descriptors; cRMSE- Root mean square error; 
dMAE- Mean absolute error 
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3.2. Classification models 

Results are summarized in Table 2. The 11 QSPR models were developed similarly to the regression 

studies. The overall best performance for the training set was achieved by the WEKA-RF method. Models 1-

 3 were developed using only basis characteristics of nanoparticles. The accuracies for the training sets were 

in the range 76-100% (see Table 2). The compounds in the external test sets were predicted with total 

accuracies Ac=78-100%. 

Table 2 Comparison of classification QSPR models built with different MLM 

M.a Set NPs Desc.b MLMc Precision (low) Precision (high) Accuracy 

Data set 1(LC50) 

1 Training set 1 193 11 ASNN 0.90 0.90 90%±2.0 

Test set 1 83 0.80 0.78 80%±4.0 

2 Training set1 193 11 WEKA-RF 0.97 0.96 97%±1.0 

Test set 1 83 0.79 0.78 78%±5.0 

3 Training set 1 193 12 kNN 0.80 0.78 79%±3.0 

Test set 1 83 0.78 0.79 78%±5.0 

Data set 2 (EC50) 

4 Training set 2 141 43 ASNN 0.94 0.95 94%±2.0 

Test set 2 59 0.88 0.82 85%±5.0 

5 Training set 2 141 43 WEKA-RF 1.00 0.82 99%±0.8 

Test set 2 59 0.82 0.99 83%±5.0 

6 Training set 2 141 43 kNN 0.87 0.88 88%±3.0 

Test set 2 59 0.84 0.79 81%±5.0 

Data set 3 (MIC) 

7 Training set 3 66 8 ASNN 0.91 0.77 82%±5.0 

Test set 3 28 0.92 0.60 78%±7.0 

8 Training set 3 66 7 WEKA-RF 0.97 0.97 97%±2.0 

Test set 3 28 0.97 0.70 82%±7.0 

9 Training set 3 66 8 kNN 0.69 0.83 76%±5.0 

Test set 3 28 0.94 0.80 89%±7.0 

Data set 4 (LD50) 

10 Training set 4 16 24 ASNN 1.00 1.00 100%±0.0 

Test set 4 7 1.00 0.80 90%±10.0 

11 Training set 4 16 14 WEKA-RF 1.00 1.00 100%±0.0 

Test set 4 7 1.00 1.00 100%±0.0 

aM – QSPR model number; bDesc. – amount of used descriptors; cMLM – machine learning method 

As can be seen from Tables 1 and 2, the predictive ability of classification models is better than the ability of 

regression models. Therefore it will be better to use classification models in the first stage of evaluation of 

the toxicity of new NPs. Then regression models can be used as a reliability measure for classification 

purposes. 

A limitation of the proposed models, as is for all QSPR models in general, is that the models work well for the 

NPs classes represented in the training and validation sets, but may fail catastrophically for other classes. 

Also additional errors may arise because biological data used as a training set are obtained from different 
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sources and may contain considerable experimental errors (noisy data). The next limitation of the proposed 

models is that the absence of information on some of the obligatory conditions for newly tested nanoparticles 

can lead to incorrect predictions of their toxicity. 

4. CONCLUSION 

In summary, a series of new predictive Internet models were built to develop quantitative structure-property 

relationships for different sets of nanoparticles. The OCHEM server was used to calculate the molecular 

descriptors. The original data sets were divided into training and test sets randomly. The proposed QSPR 

models have good stability, robustness and predictive power when verified by internal validation (cross-

validation by LOO) and also by external validation. The QSPR studies presented in this contribution 

emphasize that both basic characteristics of nanoparticles and computational descriptors are currently 

needed for evaluation of the toxicity of nanomaterials. The prosed approach could be a potential tool for 

estimation of toxicity of new nanoparticles at early stages of nanomaterial development. 
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